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1  |  INTRODUC TION

Exchanging information is essential in all animal societies. 
Communicating about resources, reproductive state, group 

membership, and threats are vital in ensuring the survival and suc-
cess of the group. However, relying on social information is often 
not the only available option, for example to find a food source, 
but searching for a resource individually can often be the better 
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Abstract
Communication is essential for social animals, but deciding how to utilize information 
provided by conspecifics is a complex process that depends on environmental and 
intrinsic factors. Honey bees use a unique form of communication, the waggle dance, 
to inform nestmates about the location of food sources. However, as in many other 
animals, experienced individuals often ignore this social information and prefer to rely 
on prior experiences, i.e., private information. The neurosensory factors that drive 
the decision to use social information are not yet understood. Here we test whether 
the decision to use social dance information or private information is linked to gene 
expression differences in different parts of the nervous system. We trained bees to 
collect food from sugar water feeders and observed whether they utilize social or 
private information when exposed to dances for a new food source. We performed 
transcriptome analysis of four brain parts (11–16 bees per tissue type) critical for cog-
nition: the subesophageal ganglion, the central brain, the mushroom bodies, and the 
antennal lobes but, unexpectedly, detected no differences between social or private 
information users. In contrast, we found 413 differentially expressed genes in the an-
tennae, suggesting that variation in sensory perception mediates the decision to use 
social information. Social information users were characterized by the upregulation of 
biogenic amine genes, while private information users upregulated several genes cod-
ing for odour perception. These results highlight that decision-making in honey bees 
might also depend on peripheral processes of perception rather than higher-order 
brain centres of information integration.
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choice (Dechaume-Moncharmont et al., 2005; Hoppitt & Laland, 
2013; I’Anson Price et al., 2019; Kendal et al., 2009; Laland, 2004). 
Furthermore, an individual can rely on private information (e.g., 
spatial memory) about previously visited food source locations 
(Grüter & Leadbeater, 2014; Rendell et al., 2010). It is crucial for 
an organism to assess the different available options and their 
consequences to make the best decision in a given environment. 
Acquiring information through individual exploration, for instance, 
provides up-to-date information, but comes with the cost of trial-
and-error learning. Social information avoids the costs of indi-
vidual learning and exploration, but can involve the inefficient or 
erroneous transmission of information (Dechaume-Moncharmont 
et al., 2005; Giraldeau et al., 2002; I’Anson Price et al., 2019; 
Rieucau & Giraldeau, 2011). Thus, animals often employ flexi-
ble strategies for deciding between social or private information 
(Grüter & Leadbeater, 2014; Hoppitt & Laland, 2013; Kendal et al., 
2009; Laland, 2004).

Social insects employ various methods to send signals to nest-
mates. Information exchange regarding resources is particularly 
well studied and a wide range of communication behaviours are 
used, such as tandem running in ants (Alleman et al., 2019; Glaser 
& Grüter, 2018; Möglich et al., 1974) and trail pheromones in ants, 
and stingless bees (Czaczkes et al., 2015; Hölldobler & Wilson, 
2009; Jarau, 2009). Honey bees (Apini) use a unique form of com-
munication, the waggle dance that gives spatial information to 
nestmates about both distance and direction of a food source or 
a nest site in relation to the sun (von Frisch, 1967). In foraging, 
dances are performed by returning foragers as an advertisement 
for high quality food sources. Furthermore, waggle dancers emit 
floral odours and a blend of hydrocarbons that provide additional 
information and stimulate foraging in unemployed foragers (Farina 
et al., 2012; Gilley et al., 2012; Thom et al., 2007). Only a rela-
tively small percentage of waggle dance followers use dance in-
formation to discover new food sources. The majority of waggle 
dances trigger experienced foragers to resume foraging at already 
familiar food sources, disregarding social dance information for 
private spatial information (Biesmeijer & Seeley, 2005; Grüter 
et al., 2008). While various factors, like experience (Biesmeijer 
& Seeley, 2005; Grüter & Ratnieks, 2011; Richter & Waddington, 
1993) and age (Tofilski, 2009; Woyciechowski & Moroń, 2009) are 
likely to affect whether a bee uses social information, still little is 
known about the neuronal basis of dance communication and its 
use (Barron & Plath, 2017).

Social insect behaviour and, in particular, foraging strategies are 
linked to gene expression in the brain (Ingram et al., 2011; Robinson 
et al., 2008; Toth & Robinson, 2009; Toth et al., 2010; Zayed & 
Robinson, 2012). Behavioural variation among workers and within 
foragers seems to be strongly connected to biogenic amine signal-
ling, such as dopamine, octopamine, tyramine, and serotonin sig-
nalling (Arenas et al., 2020; Barron et al., 2002; Liang et al., 2012; 
Linn et al., 2020; Mercer & Menzel, 1982; Peng et al., 2020, 2021; 
Scheiner et al., 2002, 2017; Schulz et al., 2003). Transcriptomic 
differences between behavioural groups were typically studied by 

investigating the entire brain (e.g., Alleman et al., 2019; Liang et al., 
2012; Whitfield et al., 2003). However, different brain parts serve 
specific functions and are expected to differ in gene expression. For 
example, the antennal lobes receive input from the olfactory sen-
sory neurons in the antennae (Paoli et al., 2016) and process olfac-
tory information (Homberg et al., 1989; MaBouDi et al., 2017; Paoli 
et al., 2016). Insect mushroom bodies are the centre of multimodal 
sensory integration, learning and memory (Collett & Collett, 2018; 
Strausfeld et al., 2009), whereas the central brain supports foraging 
behaviour via motor control (Hanesch et al., 1989). Barron and Plath 
(2017) have suggested that the central brain might play a crucial 
role in the decoding of waggle dance information. Finally, the sub-
oesophageal ganglion mediates reward and taste perception (Dacks 
et al., 2005; Kreissl et al., 1994; Sinakevitch et al., 2005). However, 
whether and how these different parts of the nervous system are 
involved in dance communication and information-use is not well 
understood. Furthermore, we still know little about the role of the 
peripheral nervous system for decision-making and information pro-
cessing (see e.g., Ozaki et al., 2005). The antennae, in particular, play 
important functions in social insect behaviour, both within and out-
side the colony, such as mediating pheromone signalling (Grozinger 
et al., 2003; Nagari & Bloch, 2012; Pankiw et al., 2004; Vergoz 
et al., 2009), nestmate recognition (Ozaki et al., 2005; van Zweden 
& D’Ettorre, 2010) and odour learning (Robertson & Wanner, 2006; 
Rogers & Vallortigara, 2008).

Here we compared the gene expression of bees that used dance 
information (social information, SI) with those that preferred pri-
vate information (PI) in different brain areas and the antennae in the 
honey bee Apis mellifera. We trained cohorts of workers to sucrose 
solution feeders and, subsequently, confronted them with conflict-
ing social information about a new high-quality food source. As was 
shown for scouts, i.e., foragers that search for new food sources in-
dependently (Liang et al., 2012), we predicted that there are distinct 
neurogenomic signatures underlying the decision to use either social 
or private information. We compared different brain and peripheral 
chemosensory areas in both types of bees. We demonstrate that 
bees that decode and use waggle dance information differ in gene 
expression only in the antennae and provide evidence for roles of 
biogenic amine signalling and olfactory perception.

2  |  MATERIAL S AND METHODS

2.1  |  Colony set-up

A total of six observation hives of Apis mellifera carnica were stud-
ied from August through October 2016 (H1–H3) and 2018 (C1–C3), 
each containing approximately 2000–3000 workers of mixed ages. 
Colonies were established from the Johannes Gutenberg University 
apiary in Mainz, Germany, a few weeks prior to the start of experi-
ments. Each of the observation colonies contained three frames, 
brood, food reserves and were headed by a naturally mated queen.
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2.2  |  Training

Training was conducted one colony at a time. Workers were trained 
according to standard training procedures to collect sucrose solu-
tion at one of two artificial feeders (Linn et al., 2020; von Frisch, 
1967). First, a cohort of 50–60 workers was trained to the training 
feeder (T.F.). These workers were used as the samples that would 
later be designated as either social or private information users on 
test day. Then, a smaller cohort of ~20 foragers was trained to the 
dance feeder (D.F.). These workers would be designated as dancers 
on test day. Both feeders were 150 m from the observation colo-
nies with ca. 300 m separating the training and dance feeder (Figure 
S1). Workers were trained to their respective feeder with an un-
scented 0.8 M sucrose solution and were individually marked with 
a number tag on the thorax. This spatial arrangement ensured that 
workers would visit only one feeder and no mixing of individuals 
between dance and training feeders occurred. The day after train-
ing, the sucrose solution was reduced to 0.3 M at both feeders with 
the addition of an identical scent (5 µl of essential oil/100 ml su-
crose solution). This concentration made sure that trained foragers 
would return to their respective feeder, but not recruit additional 
bees. Colonies were trained to a different odour: C1, H1 = sage, C2, 
H2  =  jasmine, C3, H3  =  peppermint. Since the same feeder loca-
tions were use throughout the experiments, a colony-specific odour 
was assigned to reduce the risk that for the duration of training and 
testing of a colony, bees from a previously studied colony would 
discover the feeders. During 60 min, workers were allowed to visit 
their feeder repeatedly (2016: 5.24  ±  3.79 visits, N  =  191; 2018: 
8.09 ± 5.17 visits, N = 102). The 60 min training with scented solu-
tion allowed workers to associate reward, scent, and location of the 
respective feeder.

2.3  |  Sample collection

On the test day, the day after the 60 min odour training, 2 M su-
crose solution with the same scent as used during training was of-
fered only at the dance feeder location, while the training feeder 
was empty. The sucrose concentration at the dance feeder was 
high to induce the collecting foragers to perform waggle dances. 
T.F. trained workers could then decide whether to use social in-
formation by following the waggle dances performed by the re-
turning dancers (fly to the D.F.) or disregard the dance vector 
information and use private information (return to the T.F.). The 
arrival time and capture time of each individual bee was recorded. 
Dance and dance following behaviour were recorded in the obser-
vation colony using a high definition camera to quantify dance fol-
lowing behaviour by T.F. foragers. Workers trained to the T.F. that 
arrived at the D.F location were collected in Eppendorf tubes and 
immediately preserved in liquid nitrogen; these workers were the 
social information users. Workers trained to the T.F. feeder that 
arrived at the T.F. feeder location were collected at a similar time; 
these workers were the private information users.

2.4  |  Video analysis

Videos were analysed using VLC Media Player. Dances and dance 
following behaviours were analysed frame by frame. A worker 
was only counted as following a dance when she was within one 
antennal length of a marked dancer during the waggle run phase 
(Grüter et al., 2008; Linn et al., 2020), which is the component of 
the waggle dance that encodes the vector information (von Frisch, 
1967). We compared the dance following behaviour of private and 
social information users with linear mixed-effects models (LME 
and GLMMs). The nlme-package and linear mixed-effects mod-
els (LMEs) were used when the response variable was normally 
distributed (waggles per dance followed, averaged for each bee). 
The lme4-package and generalized linear mixed-effects models 
(GLMMs) were used when the response variable had a Poisson 
distribution (total number of dances followed; Zuur et al., 2009). 
Colony-ID and year (2016 and 2018) were included as hierarchi-
cally nested random effects to account for their effects (Zuur 
et al., 2009).

2.5  |  Brain dissection and RNA extraction

In 2016, we dissected the calyxes of the mushroom bodies and an-
tennal lobes from 14 workers (seven social information users and 
seven private information users, 2–3 per colony and type). We con-
firmed that all social information users followed dances extensively. 
In 2018 we dissected central brains and subesophageal ganglions 
from 16 workers (eight social information users and eight private in-
formation users, 2–3 per colony and type), and the antennae from 
11 different workers (1–4 per colony and type; see Figure 1 in Sen 
Sarma et al., 2009 for a schematic representation of the brain areas 
and cutoff lines). The additional handling of the samples after being 
flash frozen in liquid nitrogen caused the antennae of some samples 
to be brittle and easily break apart. Different workers were used to 
ensure that whole antennae could be used for equal extraction of 
RNA from all samples.

Heads from individual workers were cut from the body and 
fixed on melted dental wax in a prechilled petri dish over ice. The 
antennae were cut off and stored in 100 ml of TRIzol (Invitrogen). 
Incisions were made at the antennal base, around the eyes, through 
the compound eye, and the ocellus. The cuticles, glands, retina 
and tissue around the brain were removed and the exposed tis-
sues of the head were submerged with cooled bee saline (154 mM 
NaCl, 2 mM NaH2PO4, 5.5 mM Na2HPO4, pH 7.2). Subesophageal 
ganglion and central brain (which included the mushroom body 
peduncles, the bundled axons from the Kenyon cells in the ca-
lyces), were removed by cutting off optic lobes, antennal lobes, 
and mushroom body calyces. All tissues called “mushroom body” 
refer to mushroom body calyces as it is extremely difficult to re-
move mushroom body peduncles. The calyces contain the intrinsic 
Kenyon cells, where a large part of mushroom body transcription 
takes place and, therefore, the calyces are often used to study 
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mushroom body gene expression (Humphries et al., 2003; Reim & 
Scheiner, 2014; Sarma et al., 2009). Furthermore, the tissue called 
“central brain” refers to a brain region that also includes the mush-
room body peduncles and putative differences in expression in 
this tissue should be interpreted carefully because of the different 
functions of these tissues. Each dissection was completed in less 
than 5 min to prevent RNA degradation. Brain parts were stored 
in 100 ml of Trizol (Invitrogen) in −80°C for later RNA extraction 
using RNAeasy Mini Extraction Kit (Qiagen) according to the man-
ufacturer's protocol.

2.6  |  Transcriptome analysis

For sequencing, aliquots of RNA from private and social informa-
tion users were sent to Beijing Genomics Institute (BGI) for library 
construction and sequencing. In 2016, Hiseq 4000 was used to se-
quence 100 base pair (bp) paired-end reads, obtaining 40 Mio clean 
reads per sample. The total sample size was 28. In 2018, BGISeq was 
used to sequence 100 bp paired-end reads, obtaining 70 Mio clean 
reads per sample. The sequencing failed for one sample and one 
sample was damaged during the travel (Eppendorf tube burst), de-
creasing our total sample size to 41. Raw reads were quality checked 
using fastqc v.0.11.8 (Andrews, 2010) followed by Illumina adapter 
removal using trimmomatic v.0.38. (Bolger et al., 2014). Clean reads 
were aligned using hisat2 v.2.1.0 (Kim et al., 2017) to the honey bee 
genome HvA3.1 as a reference (Wallberg et al., 2019). To count 

how many aligned reads mapped to genes, we used htseq v.0.11.2 
(Anders et al., 2015) to generate count tables. Count tables for 
each part were analysed separately for gene expression differences 
between social and private information users using the r package 
deseq2 v.1.24.0 (Love et al., 2014). Before the analysis, an additional 
filtering step was added to ensure that only genes with counts of at 
least 10 reads in at least six samples (n − 1 of the smallest sample 
size) were used in the gene expression analysis. Information strate-
gies were compared using the likelihood ratio test (LRT) approach 
whereby a full model with information type (SI or PI) and colony-ID 
as fixed factors is compared with a reduced model containing only 
colony-ID, taking into consideration colony effects. Genes were 
considered differentially expressed if the false discovery rate (FDR) 
corrected p-value was <.05. To ensure that the number of DEGs 
calculated by DESeq2 were not due to chance and to account for 
the uneven number of samples across bee types and colonies for 
the antennae, we additionally performed permutations by switch-
ing samples from opposite information user groups (see methods 
in Libbrecht et al., 2016). For example, a sample was switched for a 
different information user group and the number and distribution of 
DEGs was compared to those calculated from our model in deseq2. 
We performed 28 permutations (14 times switching two samples for 
each group and 14 times switching three samples for each group) 
and recorded the number of DEGs in each permutation. We then 
compared this number to the numbers for all possible combina-
tions of our samples to assess the number of DEGs that could be 
expected by chance.

F I G U R E  1  Principal component analysis (PCA) plots displaying variance between individual samples based on all genes for each 
tissue type. Samples are organized by colour according to information use strategy (blue = social, red = private) and shapes by colony ID 
(circles = colony 1, triangles = colony 2, squares = colony 3
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We used the r package degreport v.1.20.0 (Pantano, 2019) to vi-
sualize any patterns for all genes going into the analyses and to iden-
tify clustering patterns across social and private information users by 
using the rlog function of deseq2 to generate normalized count data 
and the default settings. PCAs (principal components analysis) based 
on all genes were performed for all tissues to visualize variation be-
tween samples. A heatmap was generate to visualize the clustering 
patterns of the differentially expressed genes in the antenna (Figure 
S3). All analysis were performed in r v.3.5.0 (R Core Team, 2018).

2.7  |  Gene ontology enrichment

DEGs were loaded in a BLAST search on the NCBI database against 
the honey bee genome HvA3.1 to find gene annotations. To further 
obtain information about gene ontology (GO; Ashburner et al., 2000) 
and KEGG pathway (Ogata et al., 1999) enrichment we used inter-
proscan v.5.36-75.0 (Jones et al., 2014) on the protein sequences. 
The r package topgo v.2.36.0 (Alexa and Rahnenfuhrer, 2018) was 
used to perform an enrichment analysis of GO terms and a Fisher's 
exact test was performed on the list of biological processes.

3  |  RESULTS

3.1  |  Dance following of social and private 
information users

Dance following behaviour was analysed by combining data col-
lected from video analysis for both years. Using a linear mixed-
effects model, we found that SI bees followed fewer dances than 
PI bees during the testing period (5  ±  0.7559 vs. 7.091  ±  1.546 
dances) (GLMM: z-value = −2.122; p = .0338). However, SI bees fol-
lowed dances for longer (more waggle runs per dance) than PI bees 
(27.214 ± 4.089 vs. 30.818 ± 6.5; LME: t-value = 2.218; p = .0396).

3.2  |  Gene expression analysis

The likelihood ratio test (LRT) comparison of information use strate-
gies revealed no differences in gene expression between the two 
information user groups in the central brain, antennal lobes, and 
subesophageal ganglion (Figure 1). There was only one differen-
tially expressed gene between social and private information users 
from our mushroom body calyxes’ samples, which encodes for an 
uncharacterized protein (p =  .026, gene ID: rna-XR_003305479.1). 
However, there were 413 differentially expressed genes in the an-
tennae, 318 were higher expressed in social information users and 
95 were higher expressed in private information users. To confirm 
these substantial differences in gene expression in the antennae, we 
used permutations of samples to assess how this affects the number 
of DEGs in the antennae. The permutations showed that only very 
few DEGs were detected when 2–3 samples were swapped between 

the SI and PI groups and their respective colonies (colony ID as fixed 
factor: 11.89 ± 31.87, N = 28; colony ID not included: 3.25 ± 7.01, 
N  =  28; Figure S2). This confirms that the substantial differences 
in gene expression in the antennae are linked to whether bees be-
longed to the SI or the PI group. PCA plots used transformed data of 
all genes to further explore whether there is a clustering of samples 
based on information use strategies and colony. While a clustering 
pattern based on information use and colony can be seen for the 
antennae (Figure 1), the other tissues showed no clear clustering ac-
cording to information use.

Exploring the list of DEGs in the antennae revealed that numer-
ous odourant binding and chemosensory proteins differed in their 
expression in social and private information users. Specifically, we 
detected five genes for odourant or chemical perception among 
the upregulated genes in private information users (odourant bind-
ing protein 5,11, 19,7 and chemosensory protein 1) and two among 
the upregulated genes in social information users (odourant binding 
protein 7 and chemosensory protein 2; Figure 2). Several genes in-
volved in biogenic amine production or signalling were also differ-
entially expressed. Social information users had a higher expression 
of tyrosine kinase Btk29A; dopamine N-acetyltransferase,  tryptophan 
5-hydroxylase 1, which are involved in the production of dopamine 
or serotonin (Coleman & Neckameyer, 2005; Sasaki et al., 2012; 
Vavricka et al., 2014), while private information users had a higher 
expression of one gene tyramine receptor, transcript variant X1, which 
is associated with biogenic amine signalling (Blenau et al., 2000; 
Mustard et al., 2005; Figure 3). Social information users also had 
higher expression of the egg yolk precursor protein vitellogenin, a 
gene that is upregulated in nurses and downregulated in foragers’ fat 
bodies and brain (Amdam et al., 2003; Nunes et al., 2013; Figure 3).

3.3  |  Gene function and enrichment analysis

Separate GO enrichment analyses of only upregulated genes for 
each information strategy showed a small number of enriched func-
tions: nine biological processes enriched in social information users 
connected mainly on carbohydrate (10 genes) and lipid (7) metabolic 
process and 18 enriched biological processes in private information 
users focused on oxidation-reduction process (7) and protein cata-
bolic process (11).

4  |  DISCUSSION

Information and its use in animals is an important topic in behaviour, 
ecology, and evolution because information is a critical currency 
that allows animals to make adaptive decisions in a given situation 
(e.g., Dall et al., 2005; Danchin et al., 2004; Hoppitt & Laland, 2013; 
Rieucau & Giraldau, 2011). The decision of when to utilize social ver-
sus private information to best exploit potential opportunities while 
avoiding costs is crucial for success and has been studied within a va-
riety of both social and nonsocial animals (e.g., Bonnie & Earley, 2007; 
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Grüter & Ratnieks, 2011; Haak et al., 2020; Taborsky & Oliveira, 2012; 
Weimerskirch et al., 2010; Wray et al., 2012). However, it is still unclear 
whether and how molecular and neurosensory factors determine an 
individual's preference for social or private information.

Here we explore whether gene expression differences between 
honey bee foragers are linked to the use of social or private informa-
tion about food sources to uncover the potential molecular mecha-
nisms that underlie the decision to decode and use waggle dances 
in honey bees. Contrary to our prediction, the transcriptomes of all 
four analysed brain parts did not differ between bees using these two 
foraging strategies. Strikingly, however, we found substantial gene 
expression differences in the antennae. Over 400 genes were dif-
ferentially expressed between social and private information users, 
suggesting that the sensory perception of these two forager types 
differs. This is further supported by our results which show gene ex-
pression differences related to odourant binding proteins, chemosen-
sory proteins, and genes associated with biogenic amine production.

The lack of differences in the brain areas was unexpected given 
that Liang et al. (2012) found extensive differences in whole-brain 
gene expression between scouts and nonscout foragers (in their 
study, nonscout foragers could have included both private and 

social information users). We expected the mushroom bodies to 
show differences since it has previously been shown that they are 
involved in multisensory integration, learning, and place memory 
(e.g., Collett & Collett, 2018; Strausfeld et al., 2009). The anten-
nal lobes are involved in odour recognition and memory through 
the interconnectivity of neurons with the mushroom body and 
were thus selected as another area of interest (Boeckh & Tolbert, 
1993). The central brain has been suggested as an important area 
for dance communication (Barron & Plath, 2017), while the sub-
esophageal ganglion plays important roles in reward perception 
and taste (Galizia et al., 2011). Together, these brain regions were 
thought to process reward and odour perception which could play 
an important role in the decision to use dance information. Our 
study indicates that information use strategies may not primarily 
depend on integration of information in higher order centres, but 
that the antennae play a major role in decision-making when fac-
ing communication signals. However, we note that the sample size 
in this study could have limited our ability to detect small differ-
ences in brain tissues.

The 413 differentially expressed genes in the antennae pres-
ent an array of gene families and functions. Of particular interest 

F I G U R E  2  Plots of individual odourant binding protein (OBP) and chemosensory protein (CSP) genes. Black dots show counts for 
individual samples and shapes correspond to the colony ID (circle = colony 1, triangle = colony 2, square = colony 3). Coloured circles are 
representative of the average for the respective information strategy (red = private, blue = social) with confidence intervals. (a) OBP11 
(p < .001), (b) OBP19 (p = .001), (c) OBP5 (p = .03), (d) OBP7 (p < .001), (e) CSP1 (p = .009) and (f) CSP2 (p = .007). p-values shown are after 
FDR correction
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are genes coding for odourant binding proteins and those involved 
in biogenic amine production and signalling due to their potential 
roles in chemosensory perception. Thus, differences in the per-
ception of chemosensory information cues and signals could result 
in divergent foraging strategies. While our study cannot disentan-
gle whether gene expression is the cause or the consequence of 
the information use strategy, they suggest that chemosensory 
perception by the antennae could be involved in the decision to 
decode waggle dances and use social information. In many social 
insects, the antennae play an integral role in social recognition 
(Balbuena & Farina, 2020; Ozaki et al., 2005; Sharma et al., 2015). 
Studies in Oecophylla smaragdina, for instance, indicated that the 
density of antennal sensilla is important in regulating behaviour, 
particularly in determining the aggression response behaviour 
to non-nestmates (Cholé et al., 2019; Gill et al., 2013). Similar to 
other social insects, honey bee foragers first use their antennae to 
perceive and respond to a variety of chemical signals for naviga-
tion (Menzel & Greggers, 2013), efficient nectar/pollen collection 
(Arenas & Farina, 2012), and dance communication (Gilley et al., 
2012; Reinhard & Srinivasan, 2009; Thom et al., 2007).

By transporting odourants, for example, from antennal sensilla 
to odourant receptors, odourant binding proteins (OBPs) play im-
portant roles in olfactory sensitivity (Leal, 2013). They are hypoth-
esized to be important in insect communication (Pelosi et al., 2005), 
including in the honey bee which use highly complex odours and 
pheromones to regulate their social activities (Baracchi et al., 2020; 
Farina et al., 2012). Of the 21 OBPs found in the honey bee, only 

nine are exclusively expressed in the antennae. The remaining OBPs 
are active throughout the honey bee body or specific nonolfactory 
tissues (Forêt & Maleszka, 2006). Our analysis revealed that work-
ers which rely on private information in the form of spatial memory 
show higher expression of four odourant binding proteins (obp5, 
obp11, obp19, and obp7), whereas workers that rely on socially ac-
quired information upregulate one (obp7). Thus, ~25% of all OBPs 
found in honey bees were differentially expressed. Of the OBPs that 
were upregulated in private information users, obp5 and obp11 have 
been previously shown to be exclusively expressed in the antennae 
and suggest a chemosensory function (Forêt & Maleszka, 2006). 
Interestingly, obp11 is mainly expressed in a rare type of antennal 
sensilla found only in female honey bees, the sensilla basiconica, and 
is likely to facilitate the function of these sensilla (Kucharski et al., 
2016). While the ligand of obp11 remains unknown, there is evidence 
that the sensilla basiconica play important roles in the perception of 
cuticular hydrocarbons (CHCs) in ants (Sharma et al., 2015) and may 
play a similar role in honey bees (Kucharski et al., 2016). This is re-
markable because CHCs emitted by dancing bees are known to trig-
ger the use of private information in honey bees (Gilley et al., 2012; 
Thom et al., 2007). This raises the possibility that a higher expres-
sion of obp11 increases the sensitivity of bees towards CHCs emit-
ted by waggle dancers, thereby triggering private information use. 
The latter could also partly explain why private information users 
frequently follow dances, but follow them less long than social in-
formation users (Grüter & Ratnieks 2011; this study). The remaining 
differentially expressed OBPs (obp19 and obp7) have been shown 
to be ubiquitously expressed, which suggests they may have addi-
tional molecular functions which we currently do not know. Overall, 
these results indicate a difference in perceptional sensitivity where 
workers which use private information perceive some chemosen-
sory stimuli more or differently than social information users. This 
could have far reaching consequences for their behaviour given the 
role that odours play in the decision-making and information use 
of a forager, for example, in the identification and learning of floral 
resources or the perception of cuticular hydrocarbons (Gilley et al., 
2012; Grüter et al., 2008; Johnson, 1967; Reinhard et al., 2004; von 
Frisch, 1967).

Chemosensory proteins serve a similar role as OBPs in transport-
ing chemical stimuli through mechanisms that are not yet well under-
stood. These proteins are heavily concentrated in antennal sensilla 
but are also expressed in nonolfactory tissues (Calvello et al., 2005; 
Forêt et al., 2007). Of the six chemosensory proteins found in honey 
bees (McKenzie et al., 2014), two were differentially expressed in 
social and private information users, chemosensory proteins 1 and 
2. Both chemosensory proteins have been shown to be highly ex-
pressed in the antennae (Li et al., 2016), which further supports the 
view that the differences between the information strategies may be 
rooted in chemoreception.

Biogenic amines have been associated with regulating learning, 
foraging behaviour, and the transition from in-hive tasks to foraging 
(Lehman et al., 2006). Biogenic amine signalling is known to change 
with age and tissue location in honey bees (e.g., McQuillan et al., 

F I G U R E  3  Plots of individual genes associated with biogenic 
amine production and reproduction. Black dots show counts 
for individual samples and shapes correspond to the colony ID 
(circle = colony 1, triangle = colony 2, square = colony 3). Coloured 
circles are representative of the average for the respective 
information strategy (red = private, blue = social) with confidence 
intervals. (a) Tyramine receptor (p = .018), (b) Vitellogenin (p = .045), 
(c) Tyrosine kinase Btk29A (p = .006) and (d) Tryptophan 5-hydroxylase 
1 (p < .001). p-values shown are after FDR correction
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2012; Perry & Barron, 2013; Reim & Scheiner, 2014; Thamm et al., 
2017). Specifically, dopamine, serotonin, octopamine, and tyramine 
titres in the brain were found to be linked to both task and age 
(Barron et al., 2002; Harris and Woodring, 1992; Kokay & Mercer, 
1997; Schulz & Robinson, 1999). For example, tyramine levels have 
been linked to novelty seeking in scouting behaviour (Cook et al., 
2018; Liang et al., 2012), sucrose responsiveness (Scheiner, Entler, 
et al., 2017; Scheiner et al., 2002; Scheiner, Reim, et al., 2017), and 
division of labour between nectar and pollen foragers (Hunt et al., 
1995; Scheiner et al., 2001). Dopamine has been shown to modu-
late sucrose responsiveness (Scheiner et al., 2002), learning (Vergoz 
et al., 2007) and dance following (Linn et al., 2020), whereas sero-
tonin influences foraging activity (Schulz et al., 2003) and regulates 
feeding in many animals (Blundell & Halford, 1998; French et al., 
2014; Voigt & Fink, 2015). Our findings of an upregulation of genes 
associated with biogenic amine production, raise the possibility that 
social information users could differ in their sensory perception as 
well as sucrose response thresholds compared to private informa-
tion users. It is noteworthy, however, that the differences we found 
in relation to biogenic amine signalling were not in the brain. Instead, 
higher expression of several genes associated with dopamine and 
serotonin production was found in the antennae of social informa-
tion users. We did not control for foraging age or experience, which 
have already been shown to affect gene biogenic amine expression 
(Reim & Scheiner, 2014). However, the lack of differential expression 
in brain areas suggests that there was no systematic age bias in our 
samples.

Another interesting differentially expressed gene, vitellogenin, 
is best known as an egg yolk precursor protein for egg laying or-
ganisms. Under normal conditions in social insects, the queen is 
the main reproductive member and therefore produces the high-
est levels of vitellogenin. However, vitellogenin serves important 
roles for other behaviours and functions outside of reproduction 
(Morandin et al., 2014; Nelson et al., 2007). For example, nurses 
produce the next highest levels of vitellogenin in their hypheren-
geal glands to fortify brood food with protein (Amdam et al., 
2003, 2009; Wegener et al., 2009). A characteristic feature of the 
transition from nurse to forager is the drop in vitellogenin levels 
(Amdam et al., 2003; Messan et al., 2018). Our finding is consistent 
with evidence that biogenic amine levels are linked to vitellogenin 
and foraging behaviour (Koywiwattrakul et al., 2005; Linn et al., 
2020), where social information have a similar physiological state 
to nurses.

Intrinsic factors such as genetic differences could also affect the 
decision to decode waggle dances. Honey bee queens can mate with 
more than 20 drones (Strassmann, 2001), and the patriline compo-
sition of our samples is not known. It is well known that different 
patrilines can differ in foraging behaviours, such as foraging age 
(Kolmes et al., 1989). Paternal effects can also impact gustatory re-
sponsiveness and learning abilities (Behrends et al., 2007; Scheiner 
and Arnold, 2010; Scheiner et al., 1999, 2001, 2005). It is unclear 
whether systematic patriline differences in the composition of PI 
and SI bees would lead to differential gene expression only in the 

antennae, but future studies should explore whether bees using pri-
vate or social information differ in their patrilines.

Overall, our results suggest an important role of the antennae 
in mediating decision-making and information use. In particular, we 
suggest a link between chemosensory perception and the reliance 
on communication in honey bees. For instance, private and social 
information users might perceive important social and environmen-
tal odours differently. Our results and those of Ozaki et al. (2005) 
highlight our limited understanding of the cognitive and neuronal 
processes that underlie animal decision-making. The relative impor-
tance of peripheral and central information processing for decision-
making is a fascinating avenue for future research. Further studies 
are also needed to disentangle the potential effects of genetic dif-
ferences (i.e., different patrilines), differences in foraging experi-
ence, and other factors on gene expression. In addition, we need 
studies such as sucrose response thresholds, odour learning, and 
electroantennograms to confirm our hypothesis that the gene ex-
pression differences in the antennae of SI and PI bees is a result of 
differences in sensory perception.
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