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Mechanisms and adaptations that shape division of 
labour in stingless bees 
Christoph Grüter1, María Sol Balbuena2,3 and Lohan Valadares4   

Stingless bees are a diverse and ecologically important group 
of pollinators in the tropics. Division of labour allows bee 
colonies to meet the various demands of their social life, but 
has been studied in only ∼3% of all described stingless bee 
species. The available data suggest that division of labour 
shows both parallels and striking differences compared with 
other social bees. Worker age is a reliable predictor of worker 
behaviour in many species, while morphological variation in 
body size or differences in brain structure are important for 
specific worker tasks in some species. Stingless bees provide 
opportunities to confirm general patterns of division of labour, 
but they also offer prospects to discover and study novel 
mechanisms underlying the different lifestyles found in 
eusocial bees. 
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Introduction 
Division of labour, that is, non-random differences in the 
tasks that the members of a colony perform, is nearly 
universal in social insects [1]. The degree and persis-
tence in time of behavioural variation vary among spe-
cies, worker groups and tasks that are performed [2–6]. A 

honeybee (Apis mellifera) might spend only a few hours 
of her life as a nest guard [7], while a leaf-cutter ant 
minor worker will show a lifelong dedication to fungus 
gardening and nursing [5]. Division of labour is similarly 
diverse and complex in stingless bees (Meliponini), the 
largest group of eusocial bees [8], yet the social, phy-
siological and molecular mechanisms underpinning di-
vision of labour in stingless bees remain poorly 
understood. First steps have been made to explore the 
links between division of labour and gene expression 
patterns [9], juvenile hormone titres (JH) [10] or varia-
tion in immune defence [11]. These studies indicate 
that patterns repeatedly found in honeybees might vary 
in stingless bees. Here, we summarise recent advances 
in our understanding of the proximate factors linked to 
division of labour in stingless bees. 

Role of age in stingless bee division of labour 
Worker age has consistently been found to predict which 
tasks a worker performs (temporal polyethism or age 
polyethism). Young worker ants, bees or wasps often 
perform tasks close to the brood, while older workers 
defend the colony and forage for resources [1,6,12,13]. 
Stingless bees largely follow this pattern (reviewed in  
[8]). In the first few days after emergence, overall ac-
tivity is low and workers can be seen grooming them-
selves and receiving food [14–16]. In the next phase, 
workers start to perform nest building tasks, followed by 
activities related to the brood provisioning and oviposi-
tion process (POP) (approx. week 1–3). Workers in-
creasingly perform tasks away from the brood, such as 
removing waste or unloading and dehydrating nectar 
brought back by foragers [4,17]. In the later stages of 
adult life, workers spend more time outside their nest 
guarding the entrance and foraging for resources [14–17]. 
The onset of guarding and foraging coincides with an 
increase in mortality and workers usually die after 4–10 
weeks, depending on the species and the intensity of 
foraging [8]. 

Non-random task performance unrelated to 
worker age 
There is some evidence that this pattern of age-related 
behavioural transitions is not universal among stingless 
bees. Inoue et al. [18] observed in the Asian Tetragonula 
minangkabau that individual workers seemed to fall into 
different behavioural categories or clusters. Some workers 
mainly cared for the brood, whereas others focused on 
foraging. In the Neotropical Melipona marginata, task 
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performance was linked to age, but there were consider-
able behavioural differences that were not related to age  
[4]. Many workers were never seen foraging, while others 
were not observed to be involved in the POP. These 
patterns are probably more common in stingless bees, but 
discovering them will require long-term observations of 
individually marked workers. 

Morphological and physiological correlates of 
division of labour 
In several species of stingless bees, behavioural varia-
tion is linked to differences in body size and shape  
[19–21]. The guards of these species are larger than 
foragers and, in some species, these two tasks are per-
formed by distinct morphological sub-castes [20]. A 
larger body size is achieved through increased brood 
food feeding of certain brood cells by nurse bees [22] 
and is likely to be beneficial for colonies because a 
larger body size improves fighting ability [19]. In ad-
dition, body size is linked to chemosensory perception 
and antennal sensitivity, as shown in bumble bees [23]. 
In the Australian Tetragonula carbonaria and the Neo-
tropical Tetragonisca angustula, the larger guards have 
more antennal sensilla than foragers ([21,24], but see  
[25]), which is likely to be important in enemy detec-
tion [24,26]. Body size effects are likely to be more 
common, including for tasks other than guarding, such 
as foraging for mud (Figure 1a), where body size is 
linked to mud load size in Melipona [27], or for material- 
handling tasks. For example, waste-removing bees 
were found to be larger than foragers, but smaller than 
guards in Tetragonisca angustula [19]. 

Brain morphology: how is the brain linked to task 
performance? 
As we have seen in the previous section, age and size 
heterogeneity among workers are often good predictors 
for task allocation. Each task is associated with an array 
of sensorial information processed by the brain. Thus, to 
meet the needs of the colony in an ever-changing and 
complex environment, the relatively small brain of a bee 
needs to process multiple modalities of sensory in-
formation and integrate them into behavioural outputs, 
which often involve learning and memory. The sophis-
ticated sensory capacities, complex behavioural re-
pertoire and comparatively simple nervous system has 
made social bees excellent models to study brain plas-
ticity, that is, synaptic rearrangements in response to 
intrinsic or extrinsic stimuli that ultimately affect the 
size of the brain [28,29]. In stingless bees, researchers 
have only just started to address how brain morphology 
correlates with differences in behaviour. 

In Melipona quadrifasciata, a stingless bee species with an 
age-based division of labour, Tomé et al. [30] found that 
ageing was associated with a volume increase of brain 
regions associated with processing of olfactory information 

(the antennal lobes (AL)) and with multisensorial in-
tegration, memory and learning (the mushroom bodies 
(MB)). However, the MB size increase was far more 
pronounced than the AL size increase, especially during 
the intranidal stage of age polyethism. In contrast, in 
honeybees (Apis mellifera), AL and MB enlargement is 
associated with switching from intranidal tasks to foraging  
[31–34]. The different patterns of MB growth in these 
two bee species could be linked to the fact that, com-
pared with honeybees, M. quadrifasciata colonies house a 
small number of workers (300–600 individuals), which 
spend longer time periods on intranidal tasks, possibly 
requiring greater behavioural flexibility. Young M. quad-
rifasciata workers might experience a strong demand of 
sensory information processing, which in turn would af-
fect the size of their brain at an early age. Alternatively, 
M. quadrifasciata workers might increase MB size in an-
ticipation of the cognitive demands of foraging in a 
complex tropical environment, a phenomenon referred to 
as experience-expectant plasticity [31]. 

In Tetragonisca angustula, the larger workers (guards) 
perform different defensive tasks: (1) hovering near the 
nest entrance for the detection and interception of het-
erospecific bees (a task associated with processing of 
visual information) and (2) standing at the nest entrance 
tube for the interception of conspecifics at short-range 
distance (a task that requires assessment of chemosen-
sory information) (Figure 1b) [35–38]. In accordance 
with the demands of this task, hovering guards were 
found to have larger brain compartments related to vi-
sual information processing, the optic lobes (OL) (see  
Figure 1c for a brain illustration) [39,40]. Interestingly, 
between the OL compartments, only the medulla (ME) 
region was different between the two types of guards  
[40]. The ME processes information related to shape 
and colour [41,42], optimisation of spatial resolution  
[41] and small-field motion detection [43]. Thus, it ap-
pears that the ME is tuned to the specific requirements 
of being a hovering guard. These differences in brain 
size associated with behavioural specialisation in de-
fence in T. angustula workers illustrate a functional 
neuroplasticity underpinning division of labour. 

Response thresholds and chemosensory perception 
Division of labour is linked to individual differences in 
response thresholds for different tasks [44,45]. All else 
being equal, individuals with lower response thresholds 
for a particular task are more likely to perform it than 
workers with a higher response threshold. One well- 
studied example is division of labour in foraging hon-
eybees, where sucrose response thresholds (SRTs) pre-
dict which resource a bee collects [46–48]. Honeybees 
with lower SRTs are more likely to collect pollen or 
water, while bees with higher thresholds collect nectar. 
Balbuena and Farina [25] recently tested for the first 
time whether SRTs correlate with behavioural roles in a 
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stingless bee (Tetragonisca fiebrigi). Similar to what has 
been observed in honeybees, they found that nectar 
foragers were less responsive to sucrose solutions than 
pollen foragers and guards. The authors also found that 
the antennal response (electroantennography) to odours 
that are important in nest defence (citral, a pheromone 
produced by Lestrimelitta robber bees) was stronger in 
guards than in nectar foragers, which could be linked to 
their body size differences and/or differences in their 
roles [23]. 

In addition, Balbuena and Farina [25] described the 
sensilla present on the antenna of foragers and guards 
(Figure 1d) and found that they did not differ in number 
among bee groups (in contrast to [49]). More work is 
needed to understand the links between task perfor-
mance and antennal sensitivity. One interesting ques-
tion for future research is the role of basiconic sensilla, 
which were only found on the antennae of T. fiebrigi 
females but not in males [49]. In ants, these sensilla are 
important for the detection of cuticular hydrocarbons 
(CHC), allowing individuals to discriminate between 
nestmates and non-nestmates [50]. Given that workers 
performing different tasks differ in their CHC profiles  
[51], the ability to discriminate between different task 
groups could be important for the regulation of division 
of labour in stingless bees (e.g. [52]). 

Biogenic amines and division of labour 
At the molecular level, biogenic amines (e.g. dopamine, 
octopamine, tyramine or serotonin) have been identified 
as key neuroactive molecules acting as neuro-
transmitters, neuromodulators and/or neurohormones in 
both vertebrates and invertebrates. In honeybees, bio-
genic amines modulate the behavioural development 
and division of labour among workers [53–55]. These 
effects are, at least in part, driven by biogenic amine 
effects on the responsiveness of workers to various sti-
muli, such as sucrose [56–58]. 

In stingless bees, two studies have investigated the role 
of biogenic amines in behavioural modulation of workers  
[59,60]. Mc Cabe et al. [59] found that octopamine (OA) 
ingestion in Melipona scutellaris increased sucrose re-
sponsiveness of foragers, similar to the effects in hon-
eybees [56]. More recently, Peng et al. [60] investigated 
whether OA treatment increases individual foraging ef-
fort in the neotropical stingless bee Plebeia droryana. 
They found that bees that fed sugar solution with OA 
showed a significant increase in foraging tempo, which 
could be explained by OA increasing sucrose sensitivity 
and foraging motivation, again similar to the effects of 
OA found in honeybees [61]. These studies in combi-
nation with Balbuena & Farina’s [25] findings suggest a 
causal link between biogenic amines, SRTs and division 
of labour in stingless bees. 

Conclusions and open questions 
Stingless bees show both similarities and differences in 
their division of labour compared with other social bees. 
Research into the mechanisms of division of labour is at 
an early stage and our understanding of the adaptations 
for specific tasks is limited. For example, the role of JH 
or genes that influence division of labour in other social 
insects (e.g. foraging) requires further research [9,10]. To 
what extent are different roles linked to differences in 
response thresholds, biogenic amine signalling, variation 
in morphology and physiology or the composition of gut 
microbiome? Many avenues for future research exist, but 
exciting discoveries are already being made and they 
suggest that stingless bees are a promising group for the 
discovery of novel and unexpected patterns of division 
of labour and for the regulation of individual behaviour. 
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This study reveals how specific parts of the worker brain in Tetragonisca 
angustula differ in ways that are predicted by the tasks performed by 
guards. Specifically, they show that hovering guards have larger brain 
compartments associated with visual information and information in-
tegration. 
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