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Social insect colonies function as highly integrated units

despite consisting of many individuals. This requires the

different functional parts of the colony (e.g. different castes)

to exchange information that aid in colony functioning

and ontogeny. Here we discuss inter-caste communication

in three contexts, firstly, the communication between

males and females during courtship, secondly, the

communication between queens and workers that regulate

reproduction and thirdly, the communication between worker

castes that allows colonies to balance the number of

different worker types. Some signals show surprising

complexity in both their chemistry and function, whereas

others are simple compounds that were probably already

used as pheromones in the solitary ancestors of several

social insect lineages.
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Introduction
Insect colonies often consist of thousands — and some-

times millions — of individuals and the success of indi-

viduals depends crucially on the success of the colony

[1,2]. Colonies show two kinds of division of labor. First,

there is a reproductive division of labor between queens

(and kings in termites) and the largely sterile workers.

Second, there is division of labor among the workers for

tasks like brood rearing, colony defense or foraging [1,2].

Communication between and within the different castes

(queens, males and different worker groups) is funda-

mental for the efficient functioning of a colony. In order

for colonies to respond to the often changing needs,

workers — like the cells of multicellular organisms —

need to respond to signals in ways that are beneficial to

the whole complex system.
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Most communication is based on chemical signals (or

pheromones) that are produced by exocrine glands [1–
4]. Hundreds of chemicals produced in more than 60 dif-

ferent glands have been identified in social insects [3,5],

which has led researchers to refer to social insects as

chemical factories [1]. Traditionally, pheromones have

been divided into two classes, primer and releaser pher-

omones [1]. A releaser pheromone initiates an immediate

behavioral response, whereas a primer pheromone alters

more long-term endocrine and reproductive systems in

the recipient [6]. However, it has become clear that there

are pheromones that have both releaser and primer effects

[6–8]. The pheromone signals are perceived via olfactory

sensillae on the antennae [3,9,10�,11�] before being fur-

ther processed by the olfactory system [12].

In this review we focus on recent advances in our under-

standing of inter-caste communication in three important

contexts: firstly, communication between male and female

reproductives that results in mating and, subsequently,

colony foundation, secondly, communication between

queens and workers to regulate reproduction and thirdly,

communication between different functional groups of

workers (sometimes called sub-castes) that allows colonies

to balance the number of workers performing different

tasks (for communication within castes, for example,

among foragers during resource collection or during house

hunting see [13–16]). Recent research has highlighted the

importance of chemical and behavioral complexity, con-

text, and dose for communication [6]. Furthermore, the

recent identification of several queen signals that inhibit

reproduction in workers [7,17��,18] or other queens [19] has

improved our understanding of the evolution of reproduc-

tive division of labor. New tools like calcium imaging or

genomics have started to reveal how pheromone signals are

processed in the nervous system [12,20] and how external

cues and signals induce important behavioral modifications

that are associated with large scale changes in the pattern of

gene expression in the brain (e.g. [20–22]).

Communication between males and females
Before starting a new colony reproductive individuals

must find a mating partner. Chemical communication

plays a fundamental role in this process and males in

particular show numerous adaptations that help them find

females [3]. These include large compound eyes, strong

wing muscles or antennae with large numbers of odor

receptors [23,24]. Most mating patterns fall into two broad

categories, the ‘female calling syndrome’ and the ‘male

aggregation syndrome’ [1,3]. In species with the ‘female

calling syndrome’, females are often wingless and do not

travel far from their natal nest (sometimes they call from
www.sciencedirect.com
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within the nest). They release sex pheromones to ‘call’

the winged males. These species typically form small

colonies and mating flights do not seem to be synchro-

nized across colonies. In some cases it is the workers that

‘call’ males. In Megaponera analis, for example, males

follow recruitment trails laid by workers to guide them

to the nest [1]. In the stingless bee Scaptotrigona postica, 2-

alcohols attract males from long range, but additional

substances are then required to elicit copulations by

males [25]. Once males have settled near a nest contain-

ing a virgin queen, the males themselves become attrac-

tive to other males, leading to large aggregations

(Figure 1a) [26,27]. Thus, male aggregations in many

stingless bee species are probably the outcome of both

female and male calling [26–28].

Species with larger colonies frequently exhibit a ‘male

aggregation syndrome’, whereby males from many colonies

gather at specific sites where they are later joined by
Figure 1

(a)

(b)
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(a) A male aggregation in the Neotropical stingless bee Tetragonisca

angustula. Aggregations of several hundred males are usually found

close to a nest that contains a virgin queen or will soon contain a

virgin queen (Photo by C. Grüter). (b) A fire ant (Solenopsis invicta)

queen and her retinue workers. The workers feed and groom the

queen and remove her eggs (Photo by W.R. Tschinkel).
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females [3]. In these species mating flights are usually

tightly synchronized between many colonies thereby de-

creasing the probability of inbreeding and hybridization

between closely related species. In species such as some

Camponotus, Atta and Acromyrmex, the departure of both

sexes from the nest is coordinated by the release of man-

dibular pheromones by males as they leave the nest. This,

in turn, triggers the mass exodus of females [3]. Honey bee

(Apis mellifera) drones gather at congregation areas (ranging

from 30 to 200 m in diameter) where they wait for virgin

queens [23,29]. A modification to this pattern of male

aggregations is found in bumble bees where males patrol

flight paths which they mark with labial gland secretions

[30]. In Bombus terrestris, and probably other Bombus spe-

cies, females are preferentially attracted to flight paths

marked by many males, hence selecting for males to

aggregate to attract females [3]. Another alteration to the

‘male aggregation syndrome’ is found in many polistine

wasps, where males mark objects in their territories with

scent by dragging their legs or abdomens over the substrate

or release pheromones into the air [31,32].

How females locate male aggregations is not well under-

stood but males’ mandibular glands have been implicated

as the source of the sex attractant in numerous ant genera

and conclusively demonstrated in several Pogonomyrmex
species [1,3]. The main compound found in mandibular

glands in Pogonomyrex (4-methyl-3-heptanone) seems

likely to play an important role in female attraction [3],

although controlled experiments are needed to confirm

this. Once females have found the aggregation female-

derived pheromones are thought to attract males at close

range. In Formica lugubris, for example, the source of the

attractant is the females Dufour’s gland, which contains

undecane (90%), (Z)-4-tridecene (4%), and tridecane

(4%). Synthetic undecane causes a strong male response

similar to the response observed in nature [33]. One of the

first identified sex pheromones is the honey bee ‘queen

substance’, which originates from the queens’ mandibular

glands [34]. Mandibular gland extracts of honey bee

queens attract drones from a distance of �50 m [3,29].

The most active compound (9-keto-(E)-2-decenoic acid

or 9-ODA) is almost as active as the whole blend [34].

Interestingly, Asian honeybee species also use 9-ODA as

the main male attractant [35]. However, differences in the

timing and location of mating flights and visual cues of

sexual partners seem to limit heterospecific sexual

encounters [3]. After mating, queens of some species

quickly become unattractive to males. This can be caused

by changes in the queens’ cuticular hydrocarbon (CHC)

profile (e.g. Leptothorax gredleri [36]) or by tactile signals

produced by the queen (e.g. Pogonomyrmex spp. [1]).

Communication between queen and workers
An important prerequisite for the functioning of social

insect colonies is the ability of queens to signal their

presence and good health. To this end queens produce a
Current Opinion in Neurobiology 2016, 38:6–11
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Figure 2
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Distribution of queen pheromones (indicated as blue dots). (a) In ants and termites, workers acquire queen pheromone by physically interacting

with a queen, for example, during grooming or feeding (1), when carrying queen-laid eggs (2) or when contacting egg piles (3). (b) Honey bee

workers acquire queen pheromone when contacting the queen (1), when interacting with workers that had recently been in contact with the

queen, for example, via trophallaxis with ‘messenger’ workers (2) or via the wax comb (3).
chemical signal that often has several effects, among

which are the inhibition of the rearing of new reproduc-

tives [6,37�], attraction of workers to the queen

(Figure 1b) [6,37�], the suppression of worker reproduc-

tion [6,7,17��,38–40] and chemical marking of eggs, which

allows workers to recognize whether eggs are queen-laid

or worker-laid [39,41]. The absence of the queen signal,

which generally is associated with the death of the queen,

usually elicits important changes in the colony, including

the rearing of new queens [42] or the activation of worker

ovaries to produce male brood. There has been consider-

able controversy about whether queen signals are manip-

ulative tools allowing queens to prevent workers from

reproducing or whether they are cooperative signals that

allow workers to increase their fitness [5,43–45]. The idea

behind the second hypothesis is that because worker

reproduction may impose costs for colony productivity,

workers may increase their inclusive fitness by not repro-

duction in the presence of the queen [39,46]. Several lines

of evidence support the hypothesis that queen signals are

indeed honest signals of fertility, rather than an attempt

by the queen to manipulate the workers [47�]. First, the

‘honest signal’ hypothesis predicts a positive correlation

between signal production and fertility and there is

increasing support for this prediction in ants [48,49]. A

possible explanation for this positive correlation is that

queen signals are derived from chemical by-products of

ovarian development [38,41,47�]. Second, comparative

studies show that workers often ignore queen signals

and try to reproduce in the presence of a fertile queen

if it is in their genetic interest to do so [47�,50]. Third, the

‘queen manipulation’ hypothesis predicts an evolutionary

arms race between queens and workers that leads to the
Current Opinion in Neurobiology 2016, 38:6–11 
rapid evolution of chemical signals [43,45]. Contrary to

this prediction, recent research suggests that structurally

related non-volatile hydrocarbons function as conserved

queen signals in several lineages of social insects, includ-

ing ants, wasps, bumble bees and stingless bees

[17��,18,38,47�,51], but see [52�], suggesting that queen

pheromones are derived from ancestral communication

systems that were already present in the common solitary

ancestor of ants, wasps and bees (with the exception of

the honey bee, see below) [17��,47�]. However, definitive

evidence for queen pheromones being honest signals will

require a better mechanistic understanding of how the

compounds affect workers and queens, for example

whether queen-produced pheromones exclusively bind

to antennal receptors (which would support the view that

they are honest signals) or whether they also enter the

worker circulatory system and mediate hormonal changes

directly affecting reproduction (which would be consis-

tent with pheromonal queen control) [43].

One challenge for large colonies is an efficient distribu-

tion of the queen signal. Research in ants and termites

shows that the signal is located on both the queen and on

her eggs [7,19,37�,39]. This means that the queen pres-

ence can be felt in parts of the nest where the queen is not

present (Figure 2a). In honey bees, eggs are not carried

around, but there are specialist ‘messengers’ whose role is

to actively distribute the queen pheromone in the colony

[42]. Small amounts of pheromone are also transmitted via

the wax comb (Figure 2b) [53]. Again, 9-ODA plays an

important role but, unlike in the attraction of drones,

worker attraction requires the combined presence of four

additional mandibular compounds (some strains may
www.sciencedirect.com
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require even more compounds) [6,54]. The combination

of 9-ODA and these four compounds constitute the

queen mandibular pheromone which has been shown

to alter the pattern of expression of several hundred genes

in the brain of adult workers [20,55], including genes

implicated in the dopamine pathways [56] and genes

associated with the behavioral maturation of workers from

nurses to foragers [20].

Communication between worker sub-castes
Division of labor among workers is an important reason

for the ecological success of social insects [1,2]. A key

challenge for a colony is to allocate an appropriate number

of workers to the different tasks. The number of soldiers

in a colony, for example, should match the level of threat a

colony faces [57,58]. Research has shown that phero-

mones that function as negative and positive feedbacks

play a crucial role in balancing the number of workers

performing different tasks. In honey bees, for example,

the number of workers that progress from nurse duties to

foraging duties as they age depends on the number of

foragers already present in the colony [59,60]. Foragers

produce ethyl oleate, which acts as a chemical inhibitory

factor delaying the onset of foraging [61]. The removal of

foragers leads to increased levels of juvenile hormone

(JH) titers, which is correlated with the onset of foraging

behavior [62]. Ethyl oleate is synthesized de novo and is

present in highest concentrations in the bee’s crop. Thus,

behavioral maturation and the propensity to become a

forager is modulated via trophallaxis [61], a form of food

exchange that plays a prominent role as an information

channel in various contexts [63]. A pheromone produced

by larvae has a similar effect: colonies treated with a

synthetic blend of this pheromone show delayed foraging

activities compared to workers in untreated control colo-

nies [8].

Colony defense is another important task and many

species rely on a specialist soldier caste for their safety

[1,2,64,65]. Colonies in some species are able to adjust

soldier production according to the dangers in the envi-

ronment [57,58]. An overproduction of new soldiers is

prevented because the presence of existing soldiers inhi-

bits the production of new soldiers. Such soldier inhibi-

tion has been in demonstrated in aphids [66], termites

[67] and ants [68] but the pheromones causing this effect

have not yet been identified.

Caste specific response to pheromones
Recent research has started to elucidate caste-specific

differences in the olfactory system that underlie caste-

specific responses to pheromones. For instance, males,

queens and workers differ in the number of sensory

sensillae on the antennae [69,70] and in the expression

of a range of odorant receptors (ORs), some of which are

known to respond to components of queen pheromone

[9,71]. The number of sensory sensillae, in turn, has been
www.sciencedirect.com 
shown to correlate with the number of glomeruli, the

functional units of the antennal lobes (AL, the primary

olfactory center) [69]. In honeybees, queens and workers

show morphological differences in both the primary (AL)

and secondary (mushroom bodies) olfactory center:

queens have smaller glomeruli and fewer microglomeruli

[72]. In several ants and the honeybee, males and females

differ in the number and size of glomeruli in the antennal

lobes. Females have more glomeruli, but males have

some large macroglomeruli that are less common or

absent in the female castes [12,73–75]. Additionally,

glomeruli in males may contain different types of inner-

vations than in queens and workers [73]. Calcium imaging

technology has revealed that odors, including phero-

mones, trigger specific activity patterns in the glomeruli

[12,76–78]. This was shown in honeybees where har-

nessed individuals were simultaneously exposed to floral

or pheromonal odors while measuring the spatio-temporal

excitation patterns evoked in the glomeruli [76–78].

These studies demonstrate that odor identity in the

AL is coded in odor-specific activity patterns that involve

the combined activity of a number of glomeruli and that

different classes of odors tend to activate different glo-

meruli.

Concluding remarks
Communication systems are a prerequisite for the func-

tioning of complex biological systems in general and

animal societies in particular. Yet, despite decades of

research we still have a superficial understanding of the

identity of the chemicals and the corresponding receptors

that are involved and their location of action. The devel-

opment of new molecular tools has started to shed light on

these mechanistic questions and future work will allow us

to gain a better understanding of how systems of chemical

communication evolved to regulate the behavior and

physiology of individuals and societies.
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