
Introduction to agent-based modeling

What is a model and why do

we need them?

What is a model and why do we need them?

Models are abstract representations of the world

• Models miss many aspects of reality…

…but they capture some important aspects

• Models should contain sufficient

information to make them useful

• Models can also be too realistic

to be useful!

“All models are wrong, but some are

useful” George Box, statistician

Mathematical vs. agent-based models

• Mathematical (analytical) models have a long tradition: e.g.

Lotka & Volterra model

N = population size

K = carrying capacity

r = rates of increase

α = competition coefficient

Do the model predictions match empirical data?

Venturia canescens

Plodia interpunctella (Mealmoth)

From Begon et al. 2006

Mathematical vs. agent-based models

• Agent-based simulations that have become more popular as

computer use and computer power have increased

• ABM’s simulate a system as a collection of autonomous

decision-making entities called agents/individuals

o An agent assesses its situation and makes decisions

on the basis of a set of programmed rules

o An agent is a computational individual or object with

particular properties and actions

Agent-based models are similar to computer games

o We program an environment

o We program types of agents

o We give agents rules how to behave and interact

We run virtual experiments and collect the data

Pro’s and con’s of agent-based models (ABM’s)

• Advantages of ABM’s: its easy to study…

o variability among individuals

o different types of interactions

o changes in behaviour or strategy

o heterogeneous environments

Great to model Complex Systems

What are complex systems?

Complex systems have emergent properties:

properties that can not be predicted by studying the

individual parts

Pro’s and con’s of agent based models (ABM’s)

• Advantages of ABM’s: its easy to study…

o variability among individuals

o different types of local interactions

o changes in behaviour or strategy

o heterogeneous environments

Example: simulate escape dynamics

Great to model Complex Systems

Pro’s and con’s of agent based models (ABM’s)

• Disadvantages of ABM’s:

o You need computers…sometimes powerful computers

o They can be difficult to analyse and understand

They are sometimes a bit of a black box

even for the programmer

Despite these differences, mathematical models and

agent-based models usually provide the same conclusions!

Other advantages of ABM’s

• We can model unrealistic and non-existing agents or

environments

• We can test whether speculative hypotheses are

theoretically consistent

For example, consider the following hypothesis: Alarm calls

improve survival of offspring in dangerous environments

Using ABM’s we create parents that do not perform

alarm calls (virtual mutants) and simulate offspring

survival in a virtual environment with virtual predators

Plan for today

1. Explore different examples of models in NetLogo

2. Program a model

3. Test the model

What is NetLogo

• A modelling language for agent-based models that…

o …is for free (https://ccl.northwestern.edu/netlogo/)

o …can be learned quickly

o …sophisticated enough to do useful science:

it is now used in many scientific publications
(https://ccl.northwestern.edu/netlogo/references.shtml)

1. Explore different models

• Open NetLogo  File  Models Library

go to Games  Lunar Lander  setup  go

• go to Biology  check out the following

models (5-10 min)

• “Moths”

• “Membrane Formation”

• “Climate change” (Earth Science

folder)

• go through the Sample Model #1 (15 min)

2. Build a predator-prey model

2. Build a predator-prey model

• First, think about what your model needs for your purposes

o What agents do we need?

o What behaviours do we need?

• The values can come from real world measurements or, if

no information is available, we can “guesstimate”

breed [agent type 1]

to setup

…

end

4 main sections in a code:

1. Create the agents and their characteristics (“breeds”)

2. Setup the world

3. Define behaviour of agents

to go

…

end

4. Show results

to do-plotting

…

end

;; we start by creating the agent type “sheep”

breed [sheep a-sheep] ;; always create singular and plural

• “File”  “New”, then go to the “Code” section

• Check the code for errors using the “Check” button

;; this procedure sets up the model (the “world”)

to setup

clear-all ;; resets all variables for a new run

ask patches [;; world made of patches, colour them green

set pcolor green

]

create-sheep 100 [;; create the initial sheep

setxy random-xcor random-ycor

set color white

set shape "sheep"

]

reset-ticks ;; makes sure time starts at 0

end ;; “end” always indicates the end of a command

;; comment your code!!!!! You might forget why you did what

;; this procedure starts actions, place after “to setup”

to go

ask sheep [;;”ask” asks agents to do something

wiggle ;; first turn a little bit in each direction

move ;; then step forward

]

tick ;; after agents performed actions, tick +1

end

• Create button “setup” & “go” in interface (go: choose “forever”)

;; sheep procedure, the sheep changes its heading

to wiggle

right random 90 ;; picks a random value from 0-90

left random 90

end

to move

forward 1 ;; 1 refers to 1 patch length

end

;; living & moving cost energy, we give sheep energy

sheep-own [energy] ;; add after sheep are defined

• Check if the model works

• Now our turtles need further properties

• Create slider called “number-of-sheep” (300 as maximum)

to setup

clear-all

ask patches [;; colour the world green

set pcolor green

]

create-sheep number-of-sheep [;; set to 100

setxy random-xcor random-ycor

set color white

set shape "sheep"

set energy 100

]

reset-ticks

end

;; add energy & create a number-of-sheep slider

;; moving costs energy

• Check if the model and the slider work

;; to make the “energy” value more meaningful, sheep die

;; if energy is 0

to move

forward 1

set energy energy - 1 ;; take away a unit of

;;energy with every time step

end

to go

ask sheep [

wiggle

move

check-if-dead ;; checks to see if sheep dies

]

tick

end

;; make model stop when all sheep are dead

to go

if not any? sheep [stop]

ask sheep [

wiggle

move

check-if-dead

]

tick

end

;; sheep procedure: if energy is low, sheep dies, add after

;; move procedure

to check-if-dead

if energy < 0 [

die

]

end

• Run the model and observe. What do you see?

;; plot the number of sheep

to go

if not any? sheep [stop]

ask sheep [

wiggle

move

check-if-dead

]

tick

my-update-plots ;; plot the population counts

end

• It would be useful to know how many sheep there are!

• Now we need to define the “my-update-plots” procedure

to my-update-plots

plot count sheep

end

• Create a plot and name it as you like. Rename the “Pen

update commands” to “plot count sheep”

to move

forward 1

set energy energy – movement-cost ;; set 1, max 5

end

• Create a slider for the energetic costs

to setup

clear-all

ask patches [

set grass-amount random-float 10.0 ;; amount of food

set pcolor scale-color green grass-amount 0 10

;; the brighter the green, the more grass

]

• Check the model, set it up several times and see colour

• Now we need to give sheep the ability to eat grass and gain

energy

patches-own [grass-amount] ;; patches have amounts of grass

• We need to set up the grass amount and colour the

patches to indicate how much grass there is

• Make sheep eat the grass

to go

if not any? Sheep [stop]

ask sheep [

wiggle

move

check-if-dead

eat ;; new procedure

]

tick

my-update-plots

end

;; sheep procedure, sheep eat grass, add before plotting

to eat

if(grass-amount >= 1) [;; 1st check if there is grass

set energy energy + 1 ;; increase sheep energy

set grass-amount grass-amount - 1 ;; decrease the grass

set pcolor scale-color green grass-amount 0 10

]

end

• The model behaviour is still not satisfactory. All sheep die

after they have eaten the grass

• To make it more interesting we add a procedure the make

the grass regrow

• Check the model. What happens?

• What could be changed?

;; regrow the grass procedure

to regrow-grass

ask patches [

set grass-amount grass-amount + 0.1 ;; add 0.1 every

;;time step

if grass-amount > 10 [

set grass-amount 10 ;; limit grass amount to 10

]

set pcolor scale-color green grass-amount 0 10

]

end

to go

if not any? Sheep [stop]

ask sheep [

wiggle

move

check-if-dead

eat

]

regrow-grass ;; the grass grows back

tick

my-update-plots

end

• Run the model a few times. Run it with 100 sheep or with

300 sheep. What do you observe?

• It seems that the grass-growth rate is an important

parameter, so we want to be able to change it easily with a

slider

;; regrow the grass procedure

to regrow-grass

ask patches [

set grass-amount grass-amount + grass-regrowth-rate

;set to 0.1, max 1.0

if grass-amount > 10 [

set grass-amount 10

]

set pcolor scale-color green grass-amount 0 10

]

end

• Try changing the growth rate and see what happens

• Now we also add a energy-gain slider

;; sheep procedure, sheep eat grass

to eat

if(grass-amount >= energy-gain-from-grass) [;set 1

set energy energy + energy-gain-from-grass

set grass-amount grass-amount - energy-gain-from-grass

set pcolor scale-color green grass-amount 0 10

]

end

• Try the following configuration. Can you reproduce the

mass-starvation event after around 170 time steps?

• How can the sheep population recover?

• For our purposes, simple asexual reproduction will be

enough (we don’t need to model sexual reproduction,

pregnancy, parental care ect.)

• Second assumption: sheep will reproduce when they

reached a certain energy level

to go

if not any? sheep [stop]

ask sheep [

wiggle

move

check-if-dead

eat

reproduce

]

regrow-grass

tick

my-update-plots

end

• Now we create a reproduce-procedure
;; check to see if this sheep has enough energy to reproduce

to reproduce

if energy > 200 [

set energy energy - 100 ;; reproduction requires energy

hatch 1 [set energy 100] ;; create sheep with energy

]

end

• Now what happens with very productive grass?

• Our sheep agent is done, now we need wolves!

• Programming the wolves will be easier because we already

have most of the code, we just need to add some lines

;; we add the wolf “breed”

breed [sheep a-sheep]

breed [wolves wolf]

;; replace the sheep-own property with the more generic

;; turtles-own property. It means that it applies to all agents

sheep-own [energy]

turtles-own [energy]

• Now we need to add the wolves & a wolf slider:

;; to add wolves, copy the sheep-code and modify it

to setup

clear-all

ask patches [

set grass-amount random-float 10.0

recolor-grass

]

create-sheep number-of-sheep [

setxy random-xcor random-ycor

set color white

set shape “sheep”

set energy 100

]

create-wolves number-of-wolves [;; create 50 wolves, max 300

setxy random-xcor random-ycor

set color red

set shape "wolf"

set size 1.5 ;; make them a bit bigger

set energy 100

]

reset-ticks

end • Check the model!

• Now we need to add their behaviour

• Because many behaviours are the same for sheep and

wolves (wiggling, moving, dying, reproducing), we replace

“sheep” in the go procedure with the general “turtle”

to go

if not any? turtles [stop]

ask turtles [

wiggle

move

check-if-dead

eat

reproduce

]

regrow-grass

tick

my-update-plots

end

• However, the eating behaviour of wolves should be different!

We need to modify the “eat” procedure

;; sheep eat grass, wolves eat sheep

to eat

ifelse breed = sheep [

eat-grass

]

[

eat-sheep

]

end

• First, we rename our old “eat” procedure “eat-grass”, then we

add our new, more general “eat” procedure

• Now we must define our “eat-sheep” procedure

;; wolves eat sheep

to eat-sheep

if any? sheep-here [;; checks if a sheep is on the same

;; patch

let target one-of sheep-here ;; selects a random sheep on

;; my patch

ask target [die] ;; eat the selected sheep

set energy energy + energy-gain-from-sheep

]

end

• Before running the model, don’t forget to add a slider

“energy-gain-from-sheep” (start with 5.0 as value, max. 10)

• Now the model has all the agents, behaviours, and

interactions we want. However, our graph doesn’t show all

the information we need. We need to modify the “my-update-

plots” procedure

to my-update-plots

set-current-plot-pen "sheep"

plot count sheep

set-current-plot-pen "wolves"

plot count wolves

end

• You finished the model! Now can you get populations to

fluctuate?

• Edit the plot  add 2 pen’s  provide pen name’s “sheep”,

“wolves

• Which factors help to create stable fluctuations?

• What else could you add?

• Ideally we would want to measure or

estimate the parameters from real data.

At the moment, the values are very

unrealistic

• But the model shows that there are

conditions, when these populations

fluctuate

