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Mini-Review

Background

Over 2000 years ago Aristotle (340 BC) observed that hon-
eybee (Apis mellifera) workers visit flowers of only one flower 
type during a foraging trip.1 This is known as flower constancy 
and has been shown to occur in a wide range of insect pol-
linators.1-8 Flower constancy is beneficial for plants because it 
prevents pollen loss to allospecific plants and stigma block-
ing with heterospecific pollen.4,6,9,10 On a longer time scale, it 
may also have important consequences in plant evolution and 
speciation.5

But what benefits do the pollinators receive? Indeed, there 
may be circumstances in which constancy clearly has a cost. 
A flower constant honeybee foraging in a field with several 
interspersed plant species in bloom (Fig. 1A) might lose out on 
energetically superior opportunities if she focuses on just one 
plant species. In certain experimental situations honeybee for-
agers become constant to a floral type that offers lower rewards 
than a simultaneously available alternative.11-14 The bees show 
“spontaneous” flower constancy for a color, irrespective of the 
energetic value of the rewards offered by the flowers of the 
other color.
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As first noted by Aristotle in honeybee workers, many 
insect pollinators show a preference to visit flowers of just 
one species during a foraging trip. This “flower constancy” 
probably benefits plants, because pollen is more likely to be 
deposited on conspecific stigmas. But it is less clear why insects 
should ignore rewarding alternative flowers. Many researchers 
have argued that flower constancy is caused by constraints 
imposed by insect nervous systems rather than because flower 
constancy is itself an efficient foraging method. We argue that 
this view is unsatisfactory because it both fails to explain why 
foragers flexibly adjust the degree of flower constancy and 
does not explain why foragers of closely related species show 
different degrees of constancy. While limitations of the nervous 
system exist and are likely to influence flower constancy to 
some degree, the observed behavioral flexibility suggests that 
flower constancy is a successful foraging strategy given the 
insect’s own information about different foraging options.
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Theories of Flower Constancy

Several hypothesis have been put forward to explain flower con-
stancy in insect pollinators, many of which are not mutually exclu-
sive (reviewed in ref. 4–6 and 10). Very popular is the idea that 
flower constancy is caused by nervous system limitations.5,6,10,13-15 
For example, the “interference hypothesis” argues that learning 
how to forage on a new flower type interferes with memories about 
how to forage on the current or previous type.4-7,10 Therefore, pol-
linators would do best to stick to just one type of flower. Although 
short-term memories (STM) are particularly prone to interfer-
ence,5,16 this hypothesis no longer has many supporters as convinc-
ing empirical evidence that interference causes flower constancy 
is lacking.4,6 Related to this is the “search image hypothesis,”4,10,17 
which states that flower constancy is favored because it allows for-
agers to develop a search image for a particular flower type which 
in turn helps the insect to efficiently locate flowers. The underly-
ing assumption is that an animal can only have a search image for 
one flower type at a time, which temporarily inhibits the detection 
of other types.18 However, there is little evidence for the formation 
of search images in pollinators.6

The “learning investment hypothesis” argues that flower con-
stancy is the best strategy because switching from one flower spe-
cies to a new one would lead to a period of poor efficiency as 
insects need to learn how to extract pollen or nectar from this 
new species.5,9,10 While learning how to extract nectar of complex 
flowers indeed involves a learning phase of reduced efficiency,19,20 
these time costs seem to be too low to be an important cause of 
flower constancy.5 An additional problem for this hypothesis is 
that pollinators exploiting flowers with simple morphologies and 
easily accessible rewards also show flower constancy.8

The “resource” or “work partitioning hypothesis” takes a dif-
ferent angle.5,14,21 It is argued that flower constancy in social pol-
linators, such as honeybees, is a strategy to avoid intra-colonial 
competition for flowers. However, given the impressive forag-
ing range (up to approx. Thirteen km in honeybees and 4 km 
in bumble bees, respectively) and the high colony densities of 
social bees in many areas, competition among foragers within 
a colony is presumably much weaker than competition between 
colonies.22-24 Furthermore, the prediction that colony size and the 
foraging strategy of a species are associated with the degree of 
flower constancy21 is not supported by a comparative study using 
Trigona stingless bees.2 An additional problem for this hypoth-
esis is that some solitary pollinators are also flower constant.7,8
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The hypotheses above are all unsatisfactory in one or 
another way as explanations for flower constancy in insect 
pollinators, and at best each might explain flower con-
stancy in particular circumstances. Although there could 
be multiple causes of flower constancy the hypotheses above 
are largely unable to explain two important observations. 
First, individual insect foragers show considerable behav-
ioral flexibility and quickly respond to changes of costs and 
benefits of being flower constant (Table 1). Second, closely 
related species, such as Apis mellifera and A. cerana, show 
different flower choice behaviors in similar experimental 
situations.21 Although limitations in the nervous system of 
pollinators certainly exist, we argue that flower constancy 
is less a limitation and more an adaptive behavior in its 
own right that can quickly be adjusted depending on the 
information a forager has about the energetic value of the 
flower species being visited.

Behavioral Flexibility within Species

Worker European honeybees (Apis mellifera) (Fig. 1B) show 
a very high degree of flower constancy and several studies 
have argued that this is “spontaneous,” that is caused by 
constraints of the nervous system rather than being an effi-
cient strategy of food collection.11-14,25 It has been argued 
that, due to sensory constraints, bees would become con-
stant if two flower types have colors that are perceived as 
substantially different. That is, if the alternative colors 
are highly distinct in bee color space. However, a recent 
study26 suggests that the reported inability of honeybees to 
adjust their flower choice according to differences in the 
rewards experienced was caused by the use of unnaturally 
large nectar (sucrose solution) rewards per flower (reviewed 
in ref. 27 and 28 for a similar argument). The use of real-
istic reward volumes is important because natural selection 
is likely to result in discrimination by bees in the natural 
range only.26,28 Ecologically realistic rewards showed that 
honeybee foragers were flexible and quickly adjusted their 
level of constancy, in a mixed patch of otherwise identi-
cal blue and yellow artificial flowers (Fig. 1C), according 
to the quality and quantity of the energetic rewards given 
to them on one or two training flowers. Lower rewards in 
both volume, concentration and number lead to lower lev-
els of constancy, that is a stronger tendency to land on the 
alternative flower type.26 At the highest levels of reward the 
level of constancy reached a plateau. These results fit well 
with several other studies that demonstrate how different 
foraging bee species adjust their constancy according to 
various parameters that affect the energetic costs and ben-
efits of being flower constant, such as flower handling time 
and interfloral distance (Table 1).

Flower Constancy and Information Costs

Even when foraging in a habitat with several rewarding 
flower species available, flower constancy can be the best 

Figure 1. (A) A field with wild flowers in East Sussex, UK. (B) A honeybee (Apis 
mellifera) foraging on borage (Borago officinalis) (Photos by F.L.W. Ratnieks). 
(C) Experimental setup of artificial blue and yellow flowers to study flower 
constancy in honeybees (Photo by C. Grüter).
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foragers to sample other food sources. Although attractive, there 
is currently little empirical support for this hypothesis. A. cerana 
also performs waggle dances but is less flower constant21 than A. 
mellifera. Furthermore, in a comparative study of Trigona sting-
less bees, species with a solitary foraging strategy were as flower 
constant as species with strong recruitment systems.2 Other 
factors like differences between foraging habitats (tropical vs. 
temperate), competition and resource defense, could affect the 
tendency of a species to be flower constant. Comparative studies 
under similar or controlled ecological conditions are needed to 
gain further information about flower constancy levels of insect 
pollinators in order to link flower constancy to the characteristics 
of foraging habitats and the foraging ecology.

In summary, there is currently no convincing explanation for 
the observed differences in flower constancy among bee species. 
However, there is good evidence that flower constancy in bees is 
an adaptive behavior and is not merely a result of nervous system 
constraints. The “costly-information hypothesis” is consistent 
with experimental results, for example those that show that hon-
eybees are flower constant if the reward per flower is high but are 
less constant if the rewards are low.26

strategy for an insect given informational uncertainties regard-
ing the alternatives. If the insect is collecting from a relatively 
profitable flower species, many alternative flower species will be 
less profitable. In a field with dozens of flower species5 (see also 
Fig. 1A) a bee would have to sample many species to find a better 
one. In addition, she would have to sample many flowers of each 
species to acquire reliable information about the rewards of the 
alternative species if individual flowers of one species vary in their 
energetic value.5 Thus acquiring the information necessary to 
compare species may be costly in terms of time and energy. This 
“costly-information hypothesis”5 predicts that insects should be 
flower constant if the average reward of a flower species is above 
a certain threshold, but should increasingly invest into sampling 
alternatives as the reward goes down. Thus, this hypothesis can 
explain both the high levels of flower constancy that occur when 
an insect is visiting a profitable food source and the behavioral 
flexibility that occurs if the reward from a given flower type is low 
(Table 1). In the experiments where bees showed “spontaneous 
constancy” to colors,11-14 the rewards may simply have been above 
the flower constancy threshold.

Differences between Species

If constraints caused by limitations of the nervous system were 
mainly responsible for flower constancy,13,14,25 closely related spe-
cies should behave similarly. For example, photoreceptor spectral 
sensitivity in the European honeybee and the Asian honeybee 
(A. cerana) can be assumed to be similar.29 However, A. cerana 
foragers are overall less flower constant than A. mellifera and 
seem unaffected by how distinct color pairs are in the bee color 
space.21 Other eusocial bee species also seem to be less flower con-
stant than the European honeybee.1,2,5 What causes these inter-
specific differences? Several hypotheses have been suggested. 
The “resource/work partitioning hypothesis” and its problems 
have been mentioned above. The “communication hypothesis” 
predicts that species that communicate information concern-
ing high quality food sources to nestmates will be more flower 
constant than social species without communication or which 
are non-social.5,26 Honeybees communicate the location and 
the odor of high quality food sources, inside the nest by means 
of the waggle dance.22,30,31 Additionally, they provide informa-
tion about the sugar concentration, nectar flow-rate and flower 
type when they offer small food samples to other bees inside the 
nest.32-35 By dancing more for higher quality food sources for-
agers are effectively filtering information as part of their com-
munication system,36 thereby lowering the incentive of recruited 

Table 1. Factors affecting the degree of flower constancy in eusocial 
bees, Apidae

Factor Species Reference

Reward quality
Apis mellifera 

Apis cerana 
Trigona dorsalis

14, 26, 27, 37, 38 
21 
39

Reward quantity
Apis mellifera 
Bombus spp

26, 28, 40 
41

Number of previous 
rewards

Apis mellifera 26

Color difference between 
flowers

Apis mellifera 
Bombus ephippiatus 

Bombus spp

10, 13, 14, 25 
10 
41

Floral dissimilarities  
(number of differing 

traits)

Trigona dorsalis 
Oxytrigona mellicolor 

Bombus impatiens

39 
39 

15, 42

Flower handling time Apis mellifera 25,37

Distance between flowers
Apis mellifera 
Bombus spp

14, 43, 44 
41

Local enhancement  
(presence of other bees 

on flowers)
Oxytrigona mellicolor 39
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